

Main Findings

- Precipitation over Northern Utah will increase by ~10% in winter and decrease by ~10% in summer
- Precipitation over Southern Utah will experience smaller precipitation change of the same sign
- Uniform temperature rise by ~3°F in winter and ~4°F in summer
- Warming and drying during summer work in the same direction and will lead to increased demand for water
- Warming and moistening during winter oppose each other with uncertain impacts on snow pack and water supply

The "Resolution Problem"

IPCC-AR4: Projected Precipitation Change

Current GCMs are too coarsely resolved for making meaningful regional predictions!

Solutions

A. High-resolution GCM

- expensive
- x2 resolution, x16 resources
- clean

B. Downscaling

1. Dynamical

- nest high resolution RCM into coarse resolution GCM
- expensive
- model uncertainties
- North American Regional Climate Change Assessment Project (NARCCAP)

2. Statistical

 statistical correction of model prediction based on current climate

RCM

- cheap
- reminder of this talk

Statistical Downscaling

1. For present climate, establish a statistical relationship betw. coarse model data (= predictor) and fine-scale observations (= predictand)

 Correct model deficiencies by applying the relationship, which was established for today's climate, to model data for future climate (= downscaled)

Critical assumptions

- statistical stationarity: relationship between coarse- and fine-scale data do not change
- model biases do not change

High-Resolution US Downscaling

- Monthly mean precipitation and temperature, 1950-2099
- Lawrence Livermore National Laboratory (LLNL), Bureau of Reclamation, and Santa Clara University (SCU)

- Methodology: Wood et al. 2004, Maurer 2007
- US only: 1/8 degree (ca. 12x12 km)
- 16 GCMs (IPCC-AR4), 3 scenarios (A2, A1B, B1)
- gdo-dcp.ucllnl.org/downscaled_cmip3_projections/

IPCC Scenario A1B (A2)

20 year averages, centered at

1990 (reference),

2050 (A1B),

2090 (A2)

Winter Summer

Nov-Apr May-Oct

Multi-model means

16 models

Seasonal Cycle Changes

Northern vs. Southern Utah

	Longitude	Latitude
Northern Utah	114°W-109°W	39.5°W-42°N
Southern Utah	114°W-109°W	37°W-39.5°N

Precipitation Change: A1B

Precipitation Change: A1B

IPCC Scenario A1B (A2)

A1B, 1990 vs. 2050

2040-2059

A1B, 1990 vs. 2050

A1B, 1990 vs. 2050

Temperature Change: A1B

Temperature Change: A1B

A1B, 1990 vs. 2050

Why Should We Believe This?

- Change is consistent with theoretical expectations
 - 1. General global warming
 - amplified over higher latitudes, continent interiors, mountains
 - Intensified hydrological cycle
 - "wetter gets wetter, drier gets drier"
 - 3. Widening of the Tropics, poleward shift of jet and storm tracks
 - particularly a summer phenomenon
- Multi-model means
 - robustness of model estimates increases with taking average of many models
- Degree of model agreement
 - good agreement for winter increase in precipitation
- Bias correction by statistical downscaling

Cautionary Note

- Models are not perfect
 - Coarse resolution
 - No explicit simulation of precipitation processes
 - Individual and systematic errors
- Statistical downscaling
 - Assumption of stationarity: Same corrections are applied to current and future climate
- Uncertain assumptions about future emission scenarios

Impact on Water Supply

- Retention of winter precipitation in the form of snow and gradual release by summer melt is an integral part of Utah's water supply
- Availability of water is thus controlled by
 - 1. precipitation
 - 2. temperature (snow fraction, snow melt, evaporation)
 - 3. mean, variability, and seasonal cycle
- Temperature and precipitation increase have opposing effects, making the overall outcome uncertain
- More work is required to address this issue

Thank You

Spatial Resolution

model orography [m]

Example: US Precipitation

annual climatology (mm/month)

Precipitation (in.)

50-60 120-140

A1B, 1990 vs. 2050

Dynamical (Downscaling)

Preliminary results

- North American Regional Climate Change Assessment Program (NARCCAP)
- www.narccap.ucar.edu
- Not yet completed
- Preliminary results: GFDL AM2.1 (M180)
 - -0.6x0.5,50 km
 - 1 model and 1 member only
 - SRES A2
 - 28 year averages: 2039-2066 vs.1969-1996

Precip.: High vs. Low Resolution

GFDL, A2, 2039-2066 minus 1969-1996, 1 member

For A1B scenario during 21^{st} century, average of ca. 20 models. globally: dT=0.7 1.2 1.8 2.3 2.9 °C, dP = 1 1.7 2.6 3.7 4.6 % (2000-2019,2020-2039,2040-2059, ... 2080-2099)

From: Giorgi and Bi (2005): Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations, GRL.

Precipitation

Northern Utah

Precipitation

Southern Utah

Temperature

Northern Utah

Temperature

Southern Utah

Precipitation GFDL AM2.1 (M180)

A2, 2039-2066 minus 1969-1996

